Ex vivo-expanded allogeneic natural killer cell for cancer therapy

Yu-Kyeong Hwang, Ph.D.
Green Cross LabCell
Cell therapy research Institute
Forward-Looking Statement

The forward-looking statements contained in this document involve risks and uncertainties that may affect the Company's operations, markets, products, services, prices and other factors. These risks and uncertainties include, but are not limited to, economic, competitive, legal, governmental and technological factors.

Accordingly, there is no assurance that the Company's expectations will be realized. The Company assumes no obligation to provide revisions to any forward-looking statements should circumstances change, except as otherwise required by securities and other applicable laws.
Contents

• Overview of Allogeneic NK Cell Therapy (MG4101)
• Introduction of NK cells
• Manufacturing of Allogeneic NK cells
• Characteristics of Allogeneic NK cells (MG4101)
• Efficacy of MG4101
• Preclinical studies
• Clinical studies
• Patents
Overview of Allogeneic NK Cell Therapy: MG4101
Key Highlights of MG4101

- GMP-compliant, Large-scale expanded natural killer (NK) cells for allogeneic transfusion purpose.

- Expanded from normal healthy donor-derived peripheral blood mononuclear cells.

- Highly cytotoxic and cytokine-producing NK cells with anti-tumor activity against a variety of cancer types.

- Safety proven through Phase I clinical trial in patients with lymphoma or solid tumors which was completed in Dec. 2012.

- General use for cancer patients but more favorably for patients with higher grade of KIR-Ligand mismatch.

- Currently in two separate Phase II clinical trials against childhood patients with high-risk solid tumors following haplo-identical hematopoietic stem cell transplantation, and patients with hepatocellular carcinoma after curative resection, respectively.
Introduction of NK cells
Cancer immunotherapy with NK cells

- **NK cells**
 - 5% up to 15% of the total lymphocyte in normal healthy subjects.
 - provide a first line of immune defense against viral infections and cancer.
 - influence both innate and adaptive immune host defenses.

- **Decreased cell number and weak activity of NK cells**
 - cause various cancers, hepatitis, AIDS, chronic fatigue syndrome, various immunodeficiency syndromes, and certain autoimmune diseases.

- **NK cell studies in mouse mode**
 - NK cells do not induce graft-versus-host disease (GVHD)

- **NK cells therapy has been recently entered clinical trials of various cancer types.**

- **Allogeneic NK cell therapy**
 - Patients with AML who underwent haploidentical stem cell transplantation (HI-SCT) in which KIR-ligand mismatch prevailed in the graft-versus-host direction showed improved disease-free survival (DFS) and reduced GVHD (Science, 2002, 295:2097–2100).
Therapeutic potential of NK cells

Immune modulation & anti-tumor effects

- CTL
- DC
- TH cell
- NK
- B cell
- Cell death
- IFN-α
- IFN-β
- IFN-γ
- IL-2
- Plasma cells
- Ag uptake
- Killing
Regulation of NK cell effector function

- In contrast to T cells and DCs, NK cells have antigen-independent cytolytic activity against tumor cells.
- NK cells sense the balance of expression between activating and inhibitory molecules at the surface of interacting cell.
- The sum of signals from inhibitory and activating receptors determines the effector function of NK cells (tolerance or activation).
Clinical relevance of NK cells to human diseases

<table>
<thead>
<tr>
<th>Affected protein</th>
<th>Gene mutated</th>
<th>Protein function</th>
<th>Disease</th>
<th>NK cell biology of disease</th>
<th>Infectious susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK cell activating receptors and/or ligands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD16 (FcγRIIa)</td>
<td>FCGR3A</td>
<td>Activation induced by IgG binding resulting in ADCC and IgG-independent cytotoxicity</td>
<td>NK cell deficiency due to CD16 functional impairment</td>
<td>Impaired cytotoxicity; mutant alleles FCGR3A230A, FCGR3A230G</td>
<td>Upper respiratory infections, HSV, EBV, VZV</td>
</tr>
<tr>
<td>Killer cell immunoglobulin-like receptor 3DS1</td>
<td>KIR3DS1</td>
<td>Activation of NK cell responses through recognition of HLA class I molecules on target cells</td>
<td>AIDS (HIV infection)</td>
<td>Protective effect of KIR3DS1 in combination with the HLA-B Bw4-801e allele against the progression to AIDS</td>
<td>Multiple infections</td>
</tr>
<tr>
<td>CD3-activated protein (NKp30)</td>
<td>NCR3</td>
<td>Activation of NK cell responses through recognition of ligand(s) on target cells</td>
<td>Malaria (Plasmodium falciparum infection)</td>
<td>Increased risk of developing cervical neoplasia associated with the presence of KIR3DS1 in combination with the absence of ligand for the inhibitory KIR2DL1 (HLA-C2) and KIR3DL1 (HLA-B Bw4)</td>
<td>HPV</td>
</tr>
<tr>
<td>Signaling lymphocyte activation molecule-associated protein (SAP)</td>
<td>SH2D1A</td>
<td>Receptor-mediated cell activation</td>
<td>X-linked lymphoproliferative syndrome (XLP)</td>
<td>Increased risk of developing mild malaria attack associated with the NCR3*412C allele</td>
<td>Unknown</td>
</tr>
<tr>
<td>Phosphatidylinositol glycan class A</td>
<td>PIGA</td>
<td>Biosynthesis of glycosylphosphatidylinositol-anchored proteins (including CD48)</td>
<td>Paroxysmal nocturnal hemoglobinuria</td>
<td>Impaired cytotoxicity (through specific 2B4-CD48 interaction; allele SH2D1A*507T)</td>
<td>EBV</td>
</tr>
<tr>
<td>NK tumor recognition molecule</td>
<td>NKTR</td>
<td>Recognition and lysis of target tumor cells</td>
<td>Von Hippel–Lindau syndrome</td>
<td>Decreased NK cell number and impaired cytotoxicity (multiple mutant alleles)</td>
<td>Multiple infections</td>
</tr>
<tr>
<td>NK cell inhibitory receptors and/or ligands</td>
<td></td>
<td></td>
<td></td>
<td>Impaired cytotoxicity</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Nature Immunology, 2008, 9(5):486-494
Role of NK cells in killing recipient immune cells in leukemia after HSCT

Haploidentical bone marrow hematopoietic stem cells transplantation (HSCT) in leukemia patients

Ruggeri et al Science 2002; 295:2097-2100
Prospects for the use of NK cells in immunotherapy of human cancer.

Ljunggren HG, Malmberg KJ.
Centre for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden. hans-gustaf.ljunggren@ki.se
KIR locus is located on the human chromosome region 19q13.4. Two examples of haplotypes A and B are depicted. Pseudogenes are indicated with grey boxes, activating receptor genes are in green, and inhibitory receptor genes in red. Conserved genes, which can encode activating or inhibitory receptor or be pseudogenes, are in purple boxes. Each centromeric haplotype fragment can combine with any telomeric haplotype fragment, giving rise to a high diversity of KIR haplotypes.

Curr Opin Immunol (2012) Jan 19
Patients: 448 AML (Acute myelogenous leukemia) patients who received allogeneic hematopoietic cell transplantation.

NK cell helps the implantation of hematopoietic cell, and to reduce the GVHD (graft-versus-host disease) and leukemic recurrence.

Three-year overall survival was significantly higher after transplantation from a KIR B/x donor (31% [95% CI: 26-36] vs 20% [95% CI: 13-27]; P = .007).

30% improvement in the relative risk of relapse-free survival with B/x donors compared with A/A donors (RR: 0.70 [95% CI: 0.55-0.88]; P = .002).

B/x donors were associated with a higher incidence of chronic graft-versus-host disease (GVHD; RR: 1.51 [95% CI: 1.01-2.18]; P = .03).
Improved survival with inhibitory Killer Immunoglobulin Receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation

Heather J. Symons, MD, MHS¹,³, M. Sue Leffell, PhD², Nancy D. Rossiter², Marianna Zahirak, MS¹, Richard J. Jones, MD,¹ and Ephraim J. Fuchs, MD¹

¹Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
²Department of Medicine, Johns Hopkins University, Baltimore, MD, USA

Total patient number: 85
Characteristics of Allogeneic NK cells (MG4101)
Concept of allogeneic NK cell, MG4101

Leukapheresis from a healthy donor

Ex vivo NK expansion

Selective amplification

Isolation

Adoptive transfer to a patient

Quality control
Characteristics of Large-scale GMP-expanded NK cells

A-B. Representative FACS dot plots and data analysis,
C. Fold expansion of NK cells, D. Cell viability (n=8)

Phenotype of activated NK cells after expansion

Analysis by flow cytometry before and after NK cell expansion (D0 vs. D14, n = 10 ~ 12)

(A) activating receptors
(B) inhibitory receptors (KIRs)
(C) activation markers
(D) chemokine receptors

Efficacy of MG4101
Tumor-specific cytotoxicity of MG4101

(in vitro killing activity in the co-culture system)

MG4101 effectively discriminated tumor cells from allogeneic normal PBMCs and selectively killed transformed cells, confirming that MG4101 prepared from unrelated healthy donors can be used for the treatment of cancer patients in allogeneic settings.

NKG2D ligand-mediated NK cell cytotoxicity

Summary of *in vivo* efficacy of MG4101 in preclinical cancer models

- Immune competent mouse models
 - Syngeneic tumor models for neuroblastoma

- Immune deficient mouse models
 - Xenogeneic tumor models for lymphoma, glioblastoma, ovarian cancer, and HCC.

- MG4101-treated groups showed reduced tumor mass, alleviated symptoms, and improved survival compared with control groups.

- MG4101 showed significantly enhanced anti-cancer activities in the lymphoma model when combined with low dose Rituxan which itself exerted no therapeutic efficacy as a single agent.

Preclinical Safety study
Pre-Clinical toxicity studies

- **Toxicology - Single dose**
 - SCID mice, IV
 - No severe adverse effects
 - NOAEL: > 2.5×10^7 cells/head

- **Toxicology - Repeated dose**
 - SCID mice, IV, 6 times repeat
 - No severe adverse effects
 - NOAEL: > 5×10^6 cells/head
Manufacturing of Allogeneic NK cells
Ex vivo expansion of Allogeneic NK cells
(Set up of efficient manufacturing system)

- Expansion: over several thousands folds for 14-21 days
- Purity: more than 98 percent
- Contamination-free closed culture process using commercialized plastic bag
- Storage: stable for 72 hours in the cold storage condition w/o loss of viability and activity
- Set up cryopreservation technology for final product
- Applications: NK cell therapeutics, CAR-NK cell etc.

Mass production with cryopreservation technology: reduction of the production cost!
Manufacture of Allogeneic NK cells

Clinical site

Healthy donor

Leukapheresis

Isolation of NK cells

Cryopreservation

Final Product

Cryopreservation

Product (Freezed)

Expansion

Thawing

Patient

Green Cross LabCell GMP

Freezed
GMP Conditions for Production

- Manufacturing sites: Yongin, South Korea
- Clean culture rooms, Cell storage room, Support room, QC rooms
- Clean Class: class 100 ~ class 100,000
- Clinical-GMP Permission obtained from KFDA in 2010,
Be a pioneer in cancer immunotherapy through allogeneic NK cell...