Alteration of Sensory Neurons and Spinal Response to an Experimental Osteoarthritis Pain Model

Hee-Jeong Im,1 Jae-Sung Kim,2 Xin Li,2 Naomi Kotwal,2 Dale R. Sumner,2 Andre J. van Wijnen,3 Francesca J. Davis,2 Dongyao Yan,2 Brett Levine,2 James L. Henry,4 Jacques Desevrière,5 and Jeffrey S. Kroin2

Objective. To verify the biologic links between progressive cellular and structural alterations within knee joint components and development of symptomatic chronic pain that are characteristic of osteoarthritis (OA), and to investigate the molecular basis of alterations in nociceptive pathways caused by OA-induced pain.

Methods. An animal model of knee joint OA pain was generated by intraarticular injection of monoiodoacetate (MIA) in Sprague-Dawley rats, and symptomatic pain behavior tests were performed. Relationships between development of OA with accompanying pain responses and gradual alterations in cellular and structural knee joint components (i.e., cartilage, synovium, meniscus, subchondral bone) were examined by histologic and immunohistologic analysis, microscopic examination, and microfocal computed tomography. Progressive changes in the dynamic interrelationships between peripheral knee joint tissue and central components of nociceptive pathways caused by OA-induced pain were examined by investigating cytokine production and expression in sensory neurons of the dorsal root ganglion and spinal cord.

Results. We observed that structural changes in components of the peripheral knee joint correlate with alterations in the central compartments (dorsal root ganglia and the spinal cord) and symptomatic pain assessed by behavioral hyperalgesia. Our comparative gene expression studies revealed that the pain pathways in MIA-induced knee OA may overlap, at least in part, with neuropathic pain mechanisms. Similar results were also observed upon destabilization of the knee joint in the anterior cruciate ligament transection and destabilization of the medial meniscus models of OA.

Conclusion. Our results indicate that MIA-induced joint degeneration in rats generates an animal model that is suitable for mechanistic and pharmacologic studies on nociceptive pain pathways caused by OA, and provide key in vivo evidence that OA pain is caused by central sensitization through communication between peripheral OA nociceptors and the central sensory system. Furthermore, our data suggest a mechanistic overlap between OA-induced pain and neuropathic pain.

Chronic pain is a prominent symptom of osteoarthritis (OA), but few studies have examined its role in the etiology of the disease (1). OA is already a major public health problem, and aging of the US population will substantially increase the occurrence of OA-related disability over the next decade. It remains to be established what causes pain in OA, and there is currently no effective treatment to relieve the pain induced by OA.

Nociceptors are located throughout the joint in the capsule, ligaments, menisci, periosteum, and subchondral bone (2). Data from previous studies on OA pain suggest that cellular and structural changes within the peripheral joint components may be the sources of
heightened nociception within the arthritic joint (3). Mechanical stimulation of peripheral knee joint components promotes biochemical sensitization and may activate nociceptors located on the afferent nerve fibers of either primary lesions in the cartilage (4–6) or subchondral bone (7). Nevertheless, understanding of the cause of pain in knee OA remains elusive because cartilage, which is the primary site of pathology in OA, lacks pain fibers (8).

Our prior studies demonstrated high expression of multiple inflammatory cytokines, as well as neuropeptides, in synovial fluid, synovium, joint capsular tissue, and cartilage from OA patients with severe pain (9). These inflammatory cytokines may further increase the biologic function of pain mediators by stimulating their cognate receptors, contributing to clinically symptomatic pain perception (10–12). Investigation of OA-related pain mechanisms may lead to elucidation of how peripheral tissue injury transmits pain-provoking signals caused by OA and alters nociceptive pathways.

Several animal models of OA, including spontaneous, surgically induced, or nonsurgically induced OA models, have provided biologic insights into OA-induced progressive pathologic changes in knee joint structures (13) and OA-associated pain behavior (14). Comparative gene array data demonstrate substantial differences between the mono-iodoacetate (MIA)–induced OA animal model and human OA (15). Nevertheless, many other investigators have shown that intraarticular injection of MIA, which is an inhibitor of glycolysis that disrupts metabolism in chondrocytes, causes joint tissue damage that may mimic clinical OA in patients (16–25).

In this study, we verified the utility of the MIA-induced OA animal model to pursue our investigation of the nociceptive pathways caused by OA. We determined the correlations between progressive cellular and structural alterations within the knee joint components and symptomatic chronic pain development, by performing behavior tests in this animal model using a range of different concentrations of MIA over time (0.125–2 mg per knee joint over 5 weeks). Using this verified animal model, we examined whether defective peripheral OA–affected regions can alter central components of nociceptive pathways in the dorsal root ganglia (DRGs) and the dorsal horn of the spinal cord. Our results suggest that activation of peripheral nociceptors is centrally sensitized, stimulating inflammatory cytokines at the level of sensory neurons and spinal cord. Furthermore, the findings indicate that pain caused by MIA-induced OA exhibits sensorineuronal responses that are similar to those observed in neuropathic pain models, suggesting mechanistic overlap in these 2 pain pathways.

MATERIALS AND METHODS

Induction of OA. The procedures used in this study were in compliance with the guidelines of the Rush Institutional Animal Care and Use Committee. Sprague-Dawley rats (weight 200–220 gm) were housed under standard laboratory conditions in a temperature-controlled room [21°C ± 1°C] with a normal 12-hour light/dark cycle). Animals retained full mobility and continued to grow normally. For induction of arthritis with MIA, rats were anesthetized with isoflurane (Abbott) in oxygen and administered a single percutaneous intraarticular injection of 0.125, 0.25, 0.5, or 2.0 mg of MIA (catalog no. I2512; Sigma) or saline vehicle through the infrapatellar ligament of the left knee (n = 8 in each dose group). MIA was dissolved in physiologic saline and administered in a volume of 25 µL using a 26-gauge 0.5-inch needle. The right contralateral knee was used as a behavioral and histologic control. Anterior cruciate ligament transection (ACLT) and destabilization of the medial meniscus surgical instability models of OA were induced as previously described (26).

Animal behavior tests. Thermal hyperalgesia. Responses to noxious thermal stimuli were determined using a thermal plantar device according to the procedure described by Hargreaves et al (27), before and at defined times during the 31-day period post–MIA injection. Rats were placed in opaque plastic chambers (22 cm in width × 17 cm in length × 14 cm in height) above a glass plate, for 10 minutes prior to the start of each experiment. The animals were allowed to adjust to their new environment before testing. A movable infrared radiant heat source was placed directly under the glass plate aimed at the plantar surface of the hind paw, and the time taken for hind paw withdrawal was monitored. A cutoff time of 20 seconds was used to avoid tissue damage. Two tests were carried out at 10-minute intervals, and the mean value was taken as the nociceptive threshold.

Mechanical allodynia. Testing for mechanical allodynia was performed according to the method described by Chaplan et al (28). After rats were allowed to acclimate for 15 minutes on a wire mesh grid, a calibrated set of von Frey filaments (Stoelting) was applied from below to the plantar hind paw to determine the 50% force withdrawal threshold using an iterative method. The filament forces ranged from 0.04 to 15 gm, beginning with 2.0 gm. The filament was applied to the skin with enough pressure to buckle, and was maintained for up to 6 seconds. A brisk lifting of the foot was recorded as a positive response. If no response was observed, the filament with the next highest force was applied, while the filament with the next lowest force was applied upon a positive response.

A knee extension test was performed on both legs, starting with the knee in resting position (slightly flexed). While the thigh was held, the knee was extended. The number of vocalizations in 5 extensions was counted. A knee squeeze test was performed on both legs by holding the knee between the thumb and forefinger in a medial–lateral direction. The knee was squeezed firmly (but not so strongly that the unin-
The cross-sectional area of the injected knee and the contralateral control knee were measured with callipers to determine the time course of edema.

Computerized incapacitation meter system. The DWB (dynamic weight bearing; Bioseb) is a computerized incapacitation meter system in which behavioral observations are made with the animals on 4 paws in free ambulation, which is consistent with the use of quadrupeds; thus, there is no observation bias. Study of dynamic weight bearing is an important aspect of basic and preclinical research due to the weight redistribution on other body parts (i.e., the front limbs). Decreased paw surface was quantified as OA-induced impairments in paw positioning. During the data capture, the raw data on each paw were synchronized with the images from a video camera and the averaged values were encrypted and recorded on a computer with a sampling rate of 10 Hz, providing accurate and nonbiased pain assessment. The weight distribution of the animal, per limb, with the mean and the coefficient of variation, was then shown in the result window, for each time period.

Tissue preparation. Human articular synovial tissue from knees was obtained from tissue donors through the Gift of Hope Organ and Tissue Donor Network (normal tissue specimens) and Rush Orthopedic Depository Studies (surgically removed OA tissue). For normal tissue, each donor specimen was graded for gross degenerative changes based on a modified version of the 5-point scale of Collins (29). At 2 weeks and 5 weeks after MIA or saline injection, the animals were killed with halothane anesthesia. The entire knee joints were then dissected for histologic, immunohistochemistry, and microscopic analyses and microfocal computed tomography (micro-CT) imaging evaluation. Bilateral lumbar DRGs and dorsal horns of the spinal cords were harvested under light microscopy for further analyses.

Histologic analysis. When the animals were killed, each knee was dissected aseptically, fixed in 4% paraformaldehyde, and then decalcified in EDTA, which was changed every 5 days. The decalcified knee was cut in the midsagittal plane, and paraffin embedded. Serial knee sections of exact 5 μm thickness from the middle part of the knee were obtained to prepare slides. Safranin O–fast green staining was performed to assess general morphology and the loss of proteoglycan in cartilage ground substance. Human synovium and rat knee joints were stained with hematoxylin and eosin to assess general morphology and neovascularization. For immunohistochemistry analysis of neurofilament, medium-chain rabbit polyclonal antibody (catalog no. PA1-84587; Thermo Scientific), which specifically recognizes both human and rat proteins, was used in 1:500 dilution. All samples from both knees were stained, and samples were examined independently by 2 observers (H-JI and XL).

Microscopic analyses and micro-CT. Structural alterations of articular cartilage surface and subchondral bone architecture were evaluated by microscopic examination and micro-CT scanning. Freshly dissected tibias and femurs were immediately fixed in 10% formalin, followed by micro-CT imaging analyses performed at the Rush Imaging Core Facility, using a Scanco Model 40 Desktop micro-CT. Microscopic analyses were performed to examine structural alterations in anterior and inferior articular cartilage, using a Nikon SMZ1000 (model no. 3.2.0). Subchondral bone was assessed in animal groups with and without OA-induced knee pain. Two different concentrations of MIA (0.5 mg and 2.0 mg per leg) and 2 time courses (2 weeks and 5 weeks) were assessed.

Cytokine antibody array and quantification. Entire spinal cords were dissected, and the dorsal horn was dissected under light microscopy. Tissues were lysed by homogenization in radioimmunoprecipitation assay buffer (150 mM NaCl, 1% Nonidet P40, 0.5% deoxycholate, 0.1% sodium dodecyl sulfate, and 50 mM Tris [pH 7.5]) with protease cocktail inhibitors (Sigma). The total protein concentrations of cell lysates were determined by a bicinchoninic acid protein assay (Pierce). An array for cytokine proteins (Cytokine Array; RayBio) was used to determine relative alterations in the levels of cytokines. Membranes with immobilized antibodies were incubated for 14 hours with 500 μg of total protein from either the control tissue or experimental tissue (degenerated) followed by biotin-conjugated antibody, then further incubated with horseradish peroxidase-conjugated streptavidin. Immunoreactivity was visualized using the ECL system (Amersham Biosciences) and the Signal Visual Enhancer system (Pierce), which magnifies the intensity of the signal. Densitometric measurement was performed by calculating the integrated density values for each spot (area relative intensity) using a Molecular Image Versadoc MP 4000 system and Quantity One-4.5.0 Basic 1-D Analysis software (both from Bio-Rad). The positive control signals on each membrane were used for normalization of signal intensity.

Total RNA isolation and reverse transcription (RT) and real-time polymerase chain reaction (PCR). Lumbar DRGs and spinal dorsal horns were disrupted and homogenized. Total RNA was isolated using TRIzol reagent according to the instructions provided by the manufacturer (Invitrogen). RT was carried out with 1 μg total RNA, using a ThermoScript RT-PCR system (Invitrogen) for first-strand complementary DNA (cDNA) synthesis. For real-time PCR, cDNA was amplified using an MyiQ Real-Time PCR Detection System (Bio-Rad); β-actin was used as an internal control. Deviations in samples represent 3 different donors in 3 separate experiments. Primers used were as follows: calcitonin gene-related peptide (CGRP; NCBI reference no. NM_001033956.1) forward 5'-TCTAGTGTCACTGC-CCAGAAGAGA-3', reverse 5'-GGCACAAGTTGCTCCACCACA-3'; neuropeptide Y (NCBI reference no. M15793.1) forward 5'-AGATCCAGCCTGAGACACT-GATT-3', reverse 5'-TGGGAAGGTTCTTCAAGCCTTGTTC-3'; galanin (NCBI reference no. NM_03237.1) forward 5'-TCTGTGCTCAGCCTTTCTC-ATT-3', reverse 5'-TTGGGAACCTTCCTCTCTTGTGG-3'; tumor necrosis factor α (TNFα; NCBI reference no. NM_012675.3) forward 5'-TTCCCACACCTGCTCA-AGAT-3', reverse 5'-TGGCTGACAGGTTTGGCA-3'; interleukin-1 (IL-1; NCBI reference no. NM_031512.2) forward 5'-TACATCTGGAAGAGAGCGCGGC-3', reverse 5'-TGGCAGTGCACTGTCTAATGGGAA-3'; substance P (NCBI reference no. NM_012666.2) forward 5'-TGGTCAAGATCTCACAAAAAG-3', reverse 5'-TGCAATT GGCGTTCCTTCCA-TA-3'; β-actin (NCBI reference no. NM_031144) forward 5'-TGTACCAACACTGGAACGATA-3', reverse 5'-AGCACAGGTGTGCTCTCA-3'.
Statistical analysis. Results are expressed as the mean ± SEM. Results of repetitive testing of paw withdrawal were analyzed using a repeated-measures general linear model with Student-Newman-Keuls post hoc test. Real-time PCR data were evaluated by one-way analysis of variance with Tukey’s post hoc test, using 2^−ΔΔCt values for each sample. P values less than 0.05 were considered significant.

RESULTS

Articular injection of MIA increases knee joint discomfort in rats in a dose-dependent manner. A rat model of knee joint pain was generated by intraarticular injection of MIA (0.125–2 mg) or saline as sham control, and sequential pain behavior tests were performed. A, Knee pressure hyperalgesia, assessed by number of vocalizations in response to pressure. B, Knee extension hyperalgesia, assessed by number of vocalizations in response to extension. C, Mechanical allodynia (von Frey), assessed by 50% force withdrawal threshold, in gm. D, Edema in injected knee, assessed by the ratio of the area in injected versus uninjected knees. Representative results from 1 of 2 separate experiments are shown; values are the mean ± SEM (n = 8 rats per treatment group). * = P < 0.05 versus saline-treated controls.

Figure 1. Pain behavior assessments in the mono-iodoacetate (MIA)–induced osteoarthritis (OA) model. A rat model of joint pain was generated by intraarticular injection of MIA (0.125–2 mg) or saline as sham control, and sequential pain behavior tests were performed. A, Knee pressure hyperalgesia, assessed by number of vocalizations in response to pressure. B, Knee extension hyperalgesia, assessed by number of vocalizations in response to extension. C, Mechanical allodynia (von Frey), assessed by 50% force withdrawal threshold, in gm. D, Edema in injected knee, assessed by the ratio of the area in injected versus uninjected knees. Representative results from 1 of 2 separate experiments are shown; values are the mean ± SEM (n = 8 rats per treatment group). * = P < 0.05 versus saline-treated controls.

This symptomatic joint discomfort was sustained during the entire joint pain assessment period (>8 weeks) (data not shown), suggesting the development of chronic pain. No significant edema in the injected knee
was observed after 7–10 days (Figure 1D), indicating that MIA-induced knee joint pain is OA-like chronic pain, and inflammatory responses are not a major component to the sustained pain.

Results of these pain behavior assessments were further verified by measurement of dynamic weight bearing using a computerized incapacitance meter system, in which behavioral observations are made while the animals have free quadrupedal ambulation. These measurements assess consistent use of all 4 paws and whether there was observational bias in other evaluations due to weight redistribution to other body parts (i.e., the front limbs). Our results revealed significant differences ($P < 0.03$) in weight distribution during rearing on hind limbs, between the ipsilateral knees injected with 0.5 mg MIA and the contralateral knees, at 5 weeks post–MIA administration (data not shown).

MIA-induced joint pain correlates with alterations in the structural components of the joint knees and subchondral bone and in chondrocyte gene expression. To evaluate the interrelationship between the symptomatic pain and joint pathology in the MIA-induced knee joint pain model, alterations in structural components of knee joint tissue were examined histologically. We observed time- (2 weeks and 5 weeks) and dose-dependent loss of proteoglycan in the MIA-injected knee joint cartilage and meniscus, by Safranin O staining (Figure 2A). These histologic changes correlated with time- and dose-dependent alterations in the gross appearance of both the anterior and the inferior articular cartilage surfaces (Figure 2B).

Similarly, 3-dimensional micro-CT scanning (Figure 2C) demonstrated structural alterations in the subchondral bone of rats with MIA-induced knee OA, as seen in human OA. Surface rendering of the subchondral plate indicated that the surface topography of MIA-injected joints was considerably altered, in a time- and dose-dependent manner. Administration of 2 mg MIA per knee resulted in a severely heaved and sunken surface at week 5 (Figure 2C, parts k and l) compared with results obtained with a lower dose of MIA (0.5 mg) and assessment at an earlier time point (week 2) (Figure 2C, parts c and d). Saline-injected control knees were not altered, and the joints maintained structural integrity (Figure 2B and Figure 2C, parts a, b, g, and h). In the coronal and sagittal planes of the ipsilateral joints,
pathologic changes were evident in large regions beneath the subchondral plates, reflected by formation of cysts and osteophytes, and structural changes in bone shapes, especially in knee joints injected with 2 mg MIA (Figure 2C, parts k and l).

Collectively, these results suggest that MIA-induced joint pain is correlated with structural alterations in knee joint components and subchondral bone that resemble pathologic alterations characteristic of human OA.

In order to examine the changes in early OA (2 weeks) and end-stage OA (>4 weeks), we further analyzed alterations in gene expression at the early and late stages of disease. Real-time PCR results demonstrated that gene expression patterns in the MIA-induced OA cartilage at 2 weeks and 5 weeks (Figure 2D) were similar to those reported previously (30).

MIA-induced knee OA is associated with angiogenesis in the peripheral knee joint tissue and mimics pathologic changes in human end-stage OA. Synovial angiogenesis may be stimulated during the inflammatory response that accompanies the pathologic progression of OA (31). We examined whether synovium from knees with MIA-induced OA exhibits neovascularization, as is frequently seen in the synovium of OA patients with knee pain. Interestingly, at week 5 there was clear evidence of neovascularization in synovial tissue in hematoxylin and eosin (H&E) staining, showing increased neovascularization in the synovium of MIA-treated rats (A), and nerve ingrowth was assessed based on immunoreactivity of anti–neurofilament M antibody, showing increased ingrowth in the synovium of MIA-treated rats (C). B, Synovium from normal human subjects and from patients with late-stage OA and knee pain was assessed by H&E staining, showing angiogenesis in the human knee OA synovium. See Figure 1 for other definitions.

![Figure 3](image-url)

Figure 3. Histologic and immunohistologic assessment of synovium in the MIA-induced rat OA model compared with human OA synovium. Rats were administered a single intraarticular injection of MIA (0.5 mg or 2 mg per knee) or saline (sham) and were killed 5 weeks after injection. A and C, Structural changes in rat knee joint synovium were assessed by hematoxylin and eosin (H&E) staining, showing increased neovascularization in the synovium of MIA-treated rats (A), and nerve ingrowth was assessed based on immunoreactivity of anti–neurofilament M antibody, showing increased ingrowth in the synovium of MIA-treated rats (C). B, Synovium from normal human subjects and from patients with late-stage OA and knee pain was assessed by H&E staining, showing angiogenesis in the human knee OA synovium. See Figure 1 for other definitions.
L2–L3 (L2), L3–L4 (L3), L4–L5 (L4), L5–L6 (L5), and L6–S1 (S1), there were no significant differences (data not shown). Therefore, subsequent analyses were focused on L3–L5 DRGs and examined selected inflammatory cytokines, i.e., IL-1β and TNFα (Figure 4A) or pain mediators and neuropeptides, i.e., CGRP, substance P, neuropeptide Y, and galanin (Figure 4B). These pain-associated genes are significantly up- or down-regulated in other pain pathways, such as neuropathic and inflammatory pain (33). Alterations in sensory neurons in DRGs from animals with MIA-induced knee OA pain were compared with neuronal changes in animals with neuropathic pain. Interestingly, the results showed that gene expression patterns in the 2 pain pathways are strikingly similar, suggesting that pain provoked by OA may be mediated in part through neuropathic pain mechanisms.

To ensure that the rat model of MIA-induced knee pain is appropriate for translational OA pain studies, we also compared gene expression patterns in DRGs using 2 alternative established animal models of OA, i.e., destabilization surgery by ACLT and destabilization of the medial meniscus (Figure 4C). As summarized in Table 1, our data suggested that all 3 rat models of OA-induced pain (i.e., ACLT, medial meniscus destabilization, and intraarticular injection of MIA) exhibit similar gene expression patterns in DRGs. Taken together, this indicates that the MIA model of rat OA pain is a valid model for translating findings from rodent OA pain research to human OA pain.

Table 1. Altered gene expression in the sensory neurons in DRGs in a neuropathic animal model compared with rat models of OA knee joint pain

<table>
<thead>
<tr>
<th>Gene</th>
<th>Neuropathic model (SNL)</th>
<th>OA knee pain models</th>
</tr>
</thead>
<tbody>
<tr>
<td>DREAM</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>TNFα</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>CGRP</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Substance P</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Galanin</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Neuropeptide Y</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>IL-1α/β</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

* Patterns of up-regulation or down-regulation relative to sham control are indicated by arrows. DRGs = dorsal root ganglia; OA = osteoarthritis; SNL = spinal nerve ligation; MIA = mono-iodoacetate; ACLT = anterior cruciate ligament transection; DMM = surgical destabilization of the medial meniscus; DREAM = DRE antagonist modulator; TNFα = tumor necrosis factor α; CGRP = calcitonin gene-related peptide; IL-1α/β = interleukin-1α/β.
together, these findings indicate that neuropathic pain mechanisms may be fundamental to the etiology of OA pain, independent of the biologic factors that have been proposed to be involved in the symptoms of OA.

Spinal response to the MIA-induced knee OA pain model. Peripheral sensitization is characterized by the interplay between peripheral nociceptors and inflammation, and may initiate osteoarthritic joint pain via central sensitization (34,35). Because central sensitization involves enhanced excitability of neurons, we examined spinal responses provoked by MIA-induced chronic knee joint pain. Protein expression profiling was performed using a cytokine antibody array that permits simultaneous quantitative detection of anti- and proinflammatory cytokines. Spinal dorsal horn tissue protein extracts were prepared from carefully dissected ipsilateral dorsal horn of the lumbar spinal cord of rats administered saline or 2 mg MIA. Tissue lysates from the dorsal horn of the spinal cord were prepared after 5 weeks, and incubated with array membranes to monitor alterations in cytokine levels (Figure 5A).

Quantitative changes in cytokine protein levels were measured by densitometric analysis (Figure 5B). The results revealed significant increases in levels of multiple proinflammatory cytokines and chemokines (IL-1α and IL-1β, RANTES, cytokine-induced neutrophil chemoattractant 2α/β, IL-17, thymus chemokine, TNFα, L-selectin, and vascular endothelial growth factor [VEGF]). Unexpectedly, we observed a reduction in the expression of fractalkine, an acute spinal injury pain–associated chemokine (36), and granulocyte–macrophage colony-stimulating factor (both P < 0.05). We also found a robust reduction in antiinflammatory factors, i.e., IL-4 and IL-10 (both P < 0.05). However, the antiinflammatory factor IL-13 was increased at the spinal level in animals with OA-induced pain.

To assess whether cytokine protein levels correlate with corresponding changes in messenger RNA (mRNA) levels within the cellular components of the spinal cord (i.e., glia and neurons), we examined TNFα mRNA as a representative pain-associated cytokine that is highly up-regulated at the protein level in the spinal cord due to OA-induced knee joint pain. Real-time PCR demonstrated that the expression of TNFα was substantially increased in the late stages of OA-induced pain (week 5), but not during an earlier stage (week 2) (Figure 5C). These results suggest that modulation in the expression of TNFα, and perhaps other cytokines, contributes to the development of chronic pain in OA.

DISCUSSION

The present study provides new insights into molecular mechanisms by which nociceptive pathways are associated with chronic pain in OA. Our results confirm that the MIA-induced OA model in the rat is suitable for mechanistic and pharmacologic studies on symptomatic pain caused by OA. We correlated alter-
ations in the central compartments (DRGs and the spinal cord) with structural changes in components of the peripheral knee joint and symptomatic pain. Our findings provide key in vivo evidence that OA pain is caused by central sensitization of the nociceptive pathways. The data further suggest that nociceptive signals are transduced from the affected peripheral OA region to central compartments to overproduce inflammatory cytokines and pain mediators at the level of the sensory neurons and spinal cord.

Animal models have provided useful tools for investigating neuropathic or inflammatory pain (13). Generation of animal models for studying OA pain has been more challenging because it requires induction of gradual structural changes associated with the sustained chronic pain while avoiding severe inflammation or direct nerve damage.

The MIA-induced OA model was first described by Kalbhen (37) and is highly reproducible, with predictable pain behavior responses. The model demonstrates a clear interrelationship between structural knee joint components, including cartilage, synovium, and subchondral bone, and corresponding pain behavior. Histopathologic features of the knee joint after intraarticular injection of MIA have been found to mimic those seen in human OA (16–25,37,38). Our present data corroborate these previous reports. Furthermore, findings of our dose-response and time course studies suggest that the disease induced by intraarticular injection of 0.5 mg MIA per knee joint could be representative of early OA at 2 weeks postinjection, and of end-stage OA at >4 weeks postinjection, exhibiting structural changes similar to those observed in human OA. However, Barve et al (15) suggested that the MIA-induced knee joint pain model and human OA are substantially different in terms of gene expression patterns. It is not clear at this point whether the differences described by those authors result from differences between the 2 species, and therefore, caution must be exercised in translating the data obtained from analyses of MIA-induced knee joint OA pain.

Blood vessel formation is substantially increased in the synovium in knee joints of OA patients compared with normal human tissue (Collins grade 0 or 1). In the current study, MIA-induced OA knee joint pain was associated with increased neovascularization, as is found in late-stage human OA. The increase in angiogenesis in the animal model was significant at the week-5 time point; however, we did not observe prominent angiogenic features in rats at 2 weeks after MIA injection, suggesting that angiogenesis progresses slowly. It is possible that extensive angiogenesis, as is characteristic of advanced human OA, may not develop until 4–5 weeks after the administration of MIA in the animal model (end-stage OA). Slow progression of angiogenesis in our animal model may resemble findings in the early stages of human OA (Collins grade 2 or 3), in which significant increases in angiogenesis in knee joint synovium have not been detected (29). Synovial neovascularization is frequently accompanied by inflammation (“synovitis”) in human OA (33) and largely driven by secretion of angiogenic factors (i.e., basic fibroblast growth factor, VEGF) and inflammatory cytokines, by lymphocytes that initiate a positive feedback loop (10,33). Thus, it is possible that angiogenesis may facilitate the sustained chronic pain in OA, as has been proposed previously (33).

Our comparison of several OA animal models including the MIA-injected knee OA model and neuropathic pain models reveals that OA pain pathways may overlap, at least in part, with neuropathic pain mechanisms. Our results suggest that OA-induced pain is associated with central sensitization, perhaps via neuronal and glial cellular activity. MIA-induced alterations of sensory neuronal responses to OA pain were also observed upon destabilization of the knee joint by ACLT, a well-established OA animal model. Our results are consistent with the previous observation that MIA-injected rats become responsive to medication that is normally prescribed for chronic and neuropathic pain (39–44).

Peripheral sensitization, which is the result of increased activity of peripheral nociceptors by inflammation, leads to central sensitization, which involves enhanced excitability of cellular components of spinal cord (i.e., glia and neurons) (44). Results of expression profiling using cytokine antibody arrays and real-time PCR analyses revealed that cellular components of the spinal cord respond to OA-induced pain by modulating levels of multiple cytokines. Some of the cytokines that were elevated in OA-induced pain are well-characterized pain mediators that promote central sensitization in other animal models of pain, such as neuropathic pain (42–44). We do not yet know which cytokines and what signaling components triggered by these cytokines are rate-limiting targets that control central sensitization caused by OA. Further studies using the MIA-induced OA pain model, which is a useful tool for investigation of the onset and progression of chronic nociceptive pain mechanisms, may ultimately lead to the development of a new class of molecular medicines that could effectively alleviate knee pain caused by degener-
ative joint diseases such as OA. Future studies with the objective of developing “OA-specific analgesic drugs” can build on the principal conclusion of the current study, i.e., that the dynamic interactions between peripheral knee joint tissue and central sensitization may occur through nociceptive pain pathways.

ACKNOWLEDGMENTS

We would like to thank the tissue donors, Dr. Arkady Margulis, and the Gift of Hope Organ and Tissue Donor Network for providing normal human joint tissue samples, and Dr. Gabriella Cs-Szabo and Orthopedic Tissue Repository Studies for providing OA tissue. We thank Dr. Carol Muehleman for her thoughtful discussions on microscopic observations and morphologic changes in structural knee joint components, and Dr. John Cavanaugh (Wayne State University, Detroit, MI) for generously sharing his expertise on sensory innervations and musculoskeletal pain. We also appreciate the support of the Department of Anesthesiology at Rush University Medical Center in allowing us access to the institutional animals and surgery facility. We express sincere gratitude to Dr. Jinyuan Li and Boris Jozic for their help during animal surgery and pain assessments.

AUTHOR CONTRIBUTIONS

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Im had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study conception and design. Im, Kim, Li, van Wijnen, Desevre, Kroin.

Acquisition of data. Im, Kim, Li, Kotwal, Sumner, van Wijnen, Davis, Yan, Levine, Desevre, Kroin.

Analysis and interpretation of data. Im, Kim, Li, Sumner, van Wijnen, Henry, Desevre, Kroin.

REFERENCES

25. Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, et al. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of

In several articles published in 2009–2010, the affiliation information for one of the authors/contributors, Dr. Paul Emery, was incomplete. Dr. Emery’s affiliation should have been listed as University of Leeds and NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, UK. The articles on which Dr. Emery was an author were as follows: Barkham et al, Arthritis Rheum April 2009 (pages 946–954), Bennett et al, Arthritis Rheum May 2009 (pages 1331–1341), Vital et al (letter), Arthritis Rheum June 2009 (page 1867), Saleem et al, Arthritis Rheum July 2009 (pages 1915–1922), Emery et al, Arthritis Rheum August 2009 (pages 2272–2283), Morgan et al, Arthritis Rheum September 2009 (pages 2565–2576), Emery et al, Arthritis Rheum March 2010 (pages 674–682), Jones et al, Arthritis Rheum July 2010 (pages 1944–1954), and Seibold et al, Arthritis Rheum July 2010 (pages 2101–2108). The article on which Dr. Emery was a contributor listed in the appendix was Ginzler et al, Arthritis Rheum January 2010 (pages 211–221).

We regret the errors.