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Mesenchymal stem cells (MSCs) isolated from bone marrow (BM), cartilage, and adipose tissue (AT) possess 

the capacity for self-renewal and the potential for multilineage differentiation, and are therefore perceived as 

attractive sources of stem cells for cell therapy. However, MSCs from these different sources have different 

characteristics. We compared MSCs of adult Sprague Dawley rats derived from these three sources in terms 

of their immunophenotypic characterization, proliferation capacity, differentiation ability, expression of angio-

genic cytokines, and anti-apoptotic ability. According to growth curve, cell cycle, and telomerase activity analy-

ses, MSCs derived from adipose tissue (AT-MSCs) possess the highest proliferation potential, followed by MSCs 

derived from BM and cartilage (BM-MSCs and C-MSCs). In terms of multilineage differentiation, MSCs from all 

three sources displayed osteogenic, adipogenic, and chondrogenic differentiation potential. The result of real-

time RT-PCR indicated that these cells all expressed angiogenic cytokines, with some differences in expression 

level. Flow cytometry and MTT analysis showed that C-MSCs possess the highest resistance toward hydrogen 

peroxide -induced apoptosis, while AT-MSCs exhibited high tolerance to serum deprivation-induced apoptosis. 

Both AT and cartilage are attractive alternatives to BM as sources for isolating MSCs, but these differences must 

be considered when choosing a stem cell source for clinical application.

Introduction

There has been an explosion of reports on human 

stem cells isolated from a variety of sources including 

embryonic, fetal, and adult tissues over the last 10 years. 

Mesenchymal stem cells (MSCs) can be found in various 

adult tissues and may contribute to tissue repair or regener-

ation. Compared with stem cells from the embryo or fetus, 

adult MSCs are easy to obtain and handle. Moreover, MSCs 

are suggested to be immunoprivileged, such that allogeneic 

MSCs can be transplanted when necessary.

Bone marrow (BM) has been extensively investigated 

as a source of adult stem cells. Because MSCs are multi-

potent and readily expandable in vitro, these cells have 

already been employed in early clinical studies, including 

the treatment of human myocardial infarction, osteogenesis 

imperfecta, and graft versus host disease [1–4]. However, 

MSCs constitute only a small proportion of the cells in BM 

(0.01–0.001% of nucleated cells) and their number, frequency 

and differentiation capacity correlate inversely with age. 

Subsequently, MSCs from other tissues having a similar 

immunophenotype have been isolated and investigated.

Adipose tissue (AT) is emerging as a source of stem 

cells that can be obtained by a less invasive method and in 

larger quantities than from BM. These cells can be isolated 

from human lipoaspirates and, like MSCs, can differentiate 

toward osteogenic, adipogenic, myogenic, chondrogenic, 

and especially neurogenic lineages [5].

Several groups have demonstrated that the cells derived 

from cartilage meet the criteria for MSCs, including high 

rates of proliferation, clonogenicity, multipotentiality, and 

MSC marker phenotype. These cells were called “cartilage-

derived stromal cells” [6], “dedifferentiated chondrocytes” 

[7], and “articular-derived dedifferentiated chondrocytes 

(ADDCs)” [8]. We name these cells as cartilage-derived 

MSCs in our study.

When these MSCs were considered for potential thera-

peutic applications, various mechanisms for improving reg-

eneration and functional repair were proposed. In addition 
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to the effects caused by possible differentiation of these cells, 

one of the potential mechanisms for functional improve-

ment in ischemic regions is the promotion of angiogenesis 

by means of the production of angiogenic cytokines [9,10]. 

Therefore, the expression level of angiogenic cytokines by 

these cells assessed in vitro may reG ect their potential in 

angiogenesis.

The survival capacity of MSCs in host tissues in condi-

tions of ischemia or ischemic reperfusion is another impor-

tant property to be considered. The use of an MSC graft 

approach is limited by the fact that most of the transplanted 

MSCs are readily lost, potentially triggered by the ische-

mic or ischemia-reperfusion environment in vivo [11,12]. 

In our study, we investigated the anti-apoptosis ability of 

these MSCs toward oxidative stress induced by hydrogen 

 peroxide (H2O2) or serum deprivation.

The aim of this study was to compare MSCs from BM, 

cartilage, and AT for their immunophenotype character-

ization, proliferation capacity, potential for multi-lineage 

 differentiation, expression of angiogenic cytokines, and 

resistance to apoptosis.

Materials and Methods

Isolation and culture of BM-MSCs,
C-MSCs, and AT-MSCs

MSC cells were harvested from 3-week-old male SD 

rats killed by cervical dislocation. Rats were obtained from 

the Beijing Animal Administration Center and the animal 

experiments were approved by the Animal Care and Use 

Committee of Peking University. Limb bones, articular car-

tilage, and AT from the inguinal groove were isolated and 

washed extensively with excess volumes of phosphate-buff-

ered saline (PBS) to remove blood cells.

BM was harvested by G ushing the tibial and femoral mar-

row cavities with PBS and cultured as described elsewhere 

[13]. The articular cartilage and AT were separately digested 

with 0.2% collagenase II (Sigma) with intermittent shaking 

at 37°C for 2 h and 0.1% collagenase I (Sigma) at 37°C for 

30 min. Enzyme activity was terminated by dilution with 

Dulbecco’s ModiE ed Eagle Medium (DMEM) containing 

10% fetal bovine serum (FBS) (HyClone, Logan, UT, USA). 

The G oating cells were separated from the mesenchymal cell 

fraction by centrifugation (150g) for 5 min. The pellets were 

resuspended in normal culture medium (DMEM, 10% FBS, 

and 100 U/ml penicillin/streptomycin) and E ltered through 

a 200 µm nylon mesh to remove undigested tissue.

The primary cells were cultured in 9 cm2 falcon culture 

plates for 4–5 days until they reached conG uence and were 

deE ned as passage 0. The cells were passaged at a ratio of 1: 3. 

The cells used in subsequent experiments were between 

 passage 3 and 6.

Immunophenotypic analysis

BM-MSCs, C-MSCs, and AT-MSCs at passages 3 and 6 

were trypsinized into single cell suspension and stained 

with G uorescein (FITC)-labeled antibodies including anti-

rat CD34, CD45, CD44, and CD90 (Becton Dickinson) for 

G ow cytometric analysis. NonspeciE c anti-rat IgG-FITC was 

used as an isotype control. CD73 was examined by indirect 

immunoG uorescence. The E rst antibody was mouse anti-

rat CD73 (Becton Dickinson), and the secondary antibody 

was goat anti-mouse-FITC (Zhongshan Biochemical, China). 

Isotype control was established by eliminating the second-

ary antibody.

Proliferation characteristics

Growth curves. BM-MSCs, C-MSCs, and AT-MSCs at pas-

sage 3 were seeded in a 24-well plate with 1 × 104 cells per 

well in triplicate. Cells were collected from each well 1–7 

days after seeding and counted microscopically to produce 

cell growth curves.

Cell cycle analysis. BM-MSCs, C-MSCs, and AT-MSCs at 

passages 3 and 6 (n = 5 each) were harvested respectively 

by trypsinization (0.25% trypsin-EDTA) and E xed in 70% 

cold ethanol, stored at 4°C and treated with 1 mg/ml RNase 

(TaKaRa, Japan) for 30 min at 37°C. DNA was labeled with 

20 µg/ml propidium iodide (PI, Sigma) in the dark for 30 

min at 4°C and DNA content was assessed by G ow cytom-

etry Calibur (Becton Dickinson) using the ModiFit LT v2.0 

software. Each group was analyzed in triplicate.

Telomerase activity. The telomerase activity of BM-MSCs, 

C-MSCs, and AT-MSCs at passages 3 and 6 (n = 5 each) was 

detected using the telomeric repeat ampliE cation protocol 

(TRAP) assay (Roche, Germany).

Induction of multilineage differentiation

In vitro differentiation was performed at passages 3 and 

6 for all three cell sources. For osteogenic and adipogenic 

induction, cells were seeded at 2 × 105 cells/well in 6-well 

plates and each group was analyzed in triplicate. The con-

trol groups were cultured with normal culture medium. 

Chondrogenic induction was performed differently.

Osteogenic differentiation. When they reached 80–90% con-

G uence, BM-MSCs, AT-MSCs, and C-MSCs were induced to 

osteogenic differentiation with osteogenic culture medium 

(DMEM, 10% FBS, 10 mM-glycerophosphate, 0.01 μM 

1,25-dihydroxyvitamin D3, 50 μM ascorbate-2-phosphate, 

and 100 U/ml penicillin/streptomycin) for deE ned time 

points.

The expressions of osteogenic markers Runx 2, collagen 

I (COL I) and osteocalcin (OCN) were assessed by real-time 

RT-PCR at 1, 3, 7, 10, and 14 days after induction. Osteogenic 

differentiation was also conE rmed by alkaline phosphatase 

(ALP) expression by histochemical staining and ALP activ-

ity analysis. ALP activity was measured with the ALP assay 

kit (Zhongsheng Biochemical, Beijing, China) at 0, 3, 7, 10, 

and 14 days. The results were normalized against the pro-

tein concentration and expressed as U/g/min.

Adipogenic differentiation. When they reached 80–90% 

conG uence, BM-MSCs, AT-MSCs, and C-MSCs were induced 

to adipogenic differentiation with adipogenic induction 

medium (DMEM, 10% FBS , 1 mM dexamethasone, 0.5 mM 

3-isobutyl-1-methyl-xanthine, 10 μg/ml recombinant human 

insulin and 100 U/ml penicillin/streptomycin) for 7 days.

The expressions of peroxisome proliferator activated 

receptor γ (PPARγ) and lipoprotein lipase (LPL) were 
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analyzed at 0, 3, and 7 days after induction by real-time 

RT-PCR. Adipogenic differentiation was conE rmed by the 

formation of neutral lipid-vacuoles stainable with Oil Red 

O (Sigma-Aldrich) [14]. In brief, MSCs at day 7 after induc-

tion were E xed with 4% paraformaldehyde, washed and 

stained with 0.18% Oil Red O for 5 min. The nuclei were 

counterstained with hematine solution. The proportion of 

adipogenic differentiation was evaluated by measuring the 

average photodensity of Oil Red O staining areas to the total 

area occupied by cells with a Leica Q550 CW microscope 

and Qwin image acquisition software.

Chondrogenic differentiation. BM-MSCs, AT-MSCs, and 

C-MSCs at passages 3 and 6 were induced to chondro-

genesis. Centrifugation of 2.5 × 105 cells was done at 200g 

for 5 min in a 15 ml polypropylene tube. There were two 

groups in this study: one group was cultured in chon-

drogenic  differentiation medium containing 10 ng/ml 

TGF-β1 (Peprotech, USA), 6.25 g/ml insulin, 1% antibiotic/ 

antimycotic, and the control group was cultured with 

 normal medium (DMEM, 10% FBS).

Cell pellets were harvested in Trizol reagent for the iso-

lation of mRNA at 0, 7, and 14 days after induction. The 

expression of collagen II (COL II), aggrecan, and E bromodu-

lin (Fmod) was assessed by real-time RT-PCR.

Fourteen days after induction, the cell pellets were E xed 

with 4% paraformaldehyde, embedded in parafE n and cut 

into 5 μm sections [15]. Sections were stained with 1% tolui-

dine blue (Sigma, USA) at pH 2.5 for 30 min and rinsed with 

tap water. Morphometric analysis of images in histological 

sections was carried out with an Olympus IX-70 microscope 

(Tokyo, Japan).

COL II expression was examined by indirect immunoG u-

orescence. After antigen repair and 5% goat serum block-

ing, the sections were incubated with a polyclonal antibody 

against COL II (Santa Cruz Biotechnology), followed by anti-

goat FITC-conjugated antibody (Zhongshan Biochemical, 

China) at a dilution of 1:200. After rinsing three times with 

PBS, sections were visualized by G uorescence confocal 

microscopy.

Quantitative real-time RT-PCR

Total RNA of BM-MSCs, AT-MSCs, and C-MSCs (n = 3 

each, repeated at least three times) was extracted with 

Trizol reagent (Life Technologies) and quantiE ed by ultra-

violet spectroscopy at assigned time points post-induction. 

cDNA synthesis was performed using total RNA (1 μg) as 

a template by oligo(dT) priming using the Superscript First 

Strand Synthesis System for RT-PCR (Invitrogen). Real-time 

RT-PCR was performed with an optional continuous G uo-

rescence detection system (MJ research, MA); 1 μl of reverse 

transcribed product and 1× SYBR green (Molecular Probes, 

Eugene, OR) were included in 25 μl reaction mixture (10 mM 

Tris-HCL, pH 8.3, 50 mM KCL, 1.5 mM MgCl2, 200 μM of 

dNTP mix, 0.2 μM of each primer and 1 unit of Taq DNA 

polymerase).  Real-time RT-PCR oligonucleotide primers 

were designed using Oligo 6 primer analysis software. 

PCR primers were as follows (5′–3′): Runx-2: Fw AACCC 

ACGAATGCACTATCCA, Rev CTTCCATCAGCGTCAAC 

ACCA; COL I: Fw GGAGAGAGTGCCAACTCCAG, Rev 

CCACCCCAGGGATAAAAACT; OCN: Fw AACGGTG 

GTGCCATAGATGC, Rev AGGACCCTCTCTCTGCTCAC; 

PPARγ: Fw TGGAGCCTAAGTTTGAGTTTGC, Rev 

TGACAATCTGCCTGAGGTCTG; LPL: Fw GAGATT 

TCTCTGTATGGCACA, Rev CTGCAGATGAGAAACTT 

TCTC; COL II: Fw CACCGCTAACGTCCAGATGAC, Rev 

GGAAGGCGTGAGGTCTTCTGT; aggrecan-1: Fw CCA 

CTGGAGAGGACTGCGTAG, Rev GGTCTGTGCAAGTGA 

TTCGAG; Fomd: Fw ACGTCTACACCGTCCCTGACA, 

Rev CCTGCAGCTTGGAGAAGTTCA; VEGF: Fw 

ACTGGACCCTGGCTTTACTG, Rev ACGCACTCCA 

GGGCTTCATC; IGF: Fw GCATTGTGGATGAGT 

GTTGC, Rev GGCTCCTCCT ACATTCTGTA; PDGF: Fw 

AAGCATGTGCCGGA GAAGCG, Rev TCCTCTAACCT 

CACCTGGAC; HGF: Fw TATTTACGGCTGGGGCTACA, 

Rev ACGACCAGGAACAATGACAC; bFGF: Fw AAGC GGC 

TCTACTGCAAG, Rev AGCCAGACATTGGAAGAA ACA; 

TGF-α: Fw TGTGCTGATCCACTGCTGTCA, Rev AGCAG 

GCAGTCCTTCCTTTCA; Ang-1: Fw TCGCTGCCATTCT 

GACTCAC, Rev TCTGGGCCATCTCCGACTTC; SCF: Fw 

TGGTGGCATCTGACACTAGTGA, Rev CTTCCAGTATA 

AGGCTCCAAAAGC. Each cycle consisted of 30 s denatur-

ation at 94°C, 45 s annealing at 60°C, and 45 s extension at 

72°C. Levels of mRNA were normalized against GAPDH 

using the comparative cycle threshold (CT) method. PCR 

primers for GAPDH (5′–3′) were: Fw GAAAAGCTGTGGC 

GTGATGG-3, Rev GTAGGCCATGAGGTCCACCA.

Apoptosis induction and detection

2 mmol/L H2O2-induced apoptosis. BM-MSCs, AT-MSCs, and 

C-MSCs at passage 3 (n = 6 each) were seeded at a density of 

5 × 104/cm2 in a 24-well plate, cultured for a further 24 h and 

then changed to apoptosis-inducing medium (2 mmol/L 

H2O2; DMEM and 10%FBS). After 90 min, obvious apopto-

sis was observed under confocal microscopy using In Situ 

Cell Death Detection Kit (Roche, Germany) and Annexin-

v-FITC Apoptosis Detection Kit (Biosea, Beijing, China). 

Apoptotic cell percentage was detected by G ow cytometry 

with Annexin-v-FITC Apoptosis Detection Kit.

Serum deprivation-induced apoptosis. BM-MSCs, AT-MSCs, 

and C-MSCs at passage 3 were seeded at 2 × 103 cells 

per well in a 96-well plate and then subjected to 24 to 

72 h exposure to serum free medium. Apoptosis was detected 

by MTT and G ow cytometry analysis (as described above). The 

MTT method is based on the ability of living cells to reduce 

MTT tetrazolium salt to MTT formazan with the mitochon-

drial enzyme succinate-dehydrogenase. BrieG y, cells were 

incubated for 2 h with MTT solution (0.5 mg/ml PBS) and 

MTT formazan was then extracted in DMSO. Measurement 

of optical density was performed at 560 nm with a microplate 

reader. The optical density of the control (cell culture without 

any treatment) corresponds to 100% MTT reduction. Results 

were expressed as a percentage of the control and data were 

presented as mean values ± SD (n = 3).

Statistical analysis

All experiments were repeated a minimum of three 

times. Data are presented as mean ± SD. The One-Way 
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Multilineage differentiation potential

We investigated the potential of BM-MSCs, C-MSCs, and 

AT-MSCs to differentiate toward osteogenic, adipogenic and 

chondrogenic lineages.

Osteogenic differentiation capacity. ALP staining showed 

that the three types of MSC all possessed the capacity for 

osteogenic differentiation 2 weeks after induction (Fig. 2A). 

No ALP aggregates were observed in control groups (not 

shown).

The expression of osteogenic genes was assessed at 1, 

3, 7, 10, and 14 days after induction by real-time RT-PCR. 

The genes included Runx 2, a transcription factor at the 

downstream end of bone morphogenetic protein (BMP) 

signaling pathways, collagen I (COL I), and OCN, an extra-

cellular matrix protein and a marker of mature osteoblasts. 

Upregulated mRNA expression of all three osteogenic genes 

was observed in induced MSCs but with different patterns. 

Generally, upregulation of all these genes peaked at 3 or 

7 days in BM-MSCs, well ahead of AT-MSCs and C-MSCs 

(Fig. 2B–D).

Moreover, the ALP activity assay showed that BM-MSCs 

possess higher ALP activity than the other MSCs. The ALP 

activity of BM-MSCs markedly increased at days 10 and 14, 

and remained at a higher level than C-MSCs and AT-MSCs 

thereafter. There was no signiE cant difference between the 

AT-MSC and C- MSC groups (Fig. 2E).

Adipogenic differentiation capacity. Adipogenic differentia-

tion was demonstrated by the accumulation of neutral lipid 

vacuoles indicated by the Oil Red O stain (Fig. 3A). No red 

staining was detected in control groups (not shown).

The expressions of PPARγ and LPL were analyzed at 

0, 3, and 7 days after induction by real-time RT-PCR. PPARγ, 

a lipocyte-speciE c transcription factor, and LPL, a lipid 

exchange enzyme, were upregulated during adipogenesis. 

The basic expressions of PPARγ and LPL were initially 

detected in AT-MSCs and their expression levels reached a 

peak at day 3 after induction. At the same time, compared 

with BM-MSCs, the expressions dramatically increased in 

C-MSCs and reached a peak at day 3 (Fig. 3B).

In order to quantify the ratio of lipogenic differentia-

tion, additional slides stained with Oil Red O 7 days after 

induction were prepared for densitometric analysis. The 

ratio of red staining area to the total area of cells was signif-

icantly higher in C-MSC and AT-MSC samples than that of 

BM-MSCs (p < 0.01) (Fig. 3C).

Chondrogenic differentiation capacity. Compared with con-

trol groups, chondrogenic differentiation of BM-, C- and 

AT-MSCs was conE rmed by the formation of sphere-like 

pellets and the secretion of cartilage-speciE c proteoglycans 

stainable with toluidine blue. Specially, C-MSCs were able 

to form pellets that stained more intensely with toluidine 

blue, not only in the induction groups but also in the non-

induction groups (Fig. 4A).

COL II and aggrecan mRNA reached a maximum at 

about 7 days in C-MSCs, whereas mRNA levels increased up 

to 14 days in BM-MSCs and AT-MSCs. Fibromodulin (Fmod) 

levels exhibited a time-dependent increase up to 2 weeks 

after induction in all three type of cells (Fig. 4B).

ANOVA test was used to analyze results of G ow cytome-

try, real-time RT-PCR, MTT and comparison of multilineage 

induction at different time points. Differences between the 

experimental and control groups were regarded as statis-

tically signiE cant when p < 0.05. The SPSS software pack-

age (version 13.0; SPSS Inc., USA) was used for the statistical 

tests.

Results

Isolation and proliferation characteristics 
of BM-MSCs, C-MSCs, and AT-MSCs

Cells isolated from limb bones, articular cartilage, and 

AT were initially plated in 9-cm2 falcon culture plates. After 

3–4 days culture, 6–10 cell colonies were observed in the 

BM-MSC and C-MSC plates, whereas AT-MSCs reached 

100% conG uence.

There were mixtures of cells at the original passage. 

During passaging to the third generation, cells derived from 

the three different sources became more uniform and grew 

in a monolayer with typical E broblast morphology. BM-MSCs 

were larger than the others morphologically (Fig. 1A).

To further characterize these cells, cell surface mark-

ers were examined by G ow cytometry. MSCs from all 

three sources were negative for the hematopoietic line-

age markers CD34 and CD45, indicating that they were of 

non- hematopoietic origin. The percentage of CD44 positive 

cells in BM-, C- and AT-MSCs was 94.16%, 95% and 98.4%; 

CD73 was 84.07%, 60.63% and 96.98%; and CD90 (Thy-1) was 

93.38%, 61.91% and 95.61%, respectively (Fig. 1B).

Expansion characteristics

Among the three sources of MSCs, AT-MSCs grew at 

the highest speed and kept almost the same growth speed 

throughout ten generations whereas C-MSCs showed repli-

cative senescence as indicated by a loss of proliferation after 

the eighth generation. Compared with AT- and C-MSCs, 

BM-MSCs appeared to grow at a relatively slow but constant 

speed until the tenth generation. The population doubling 

time of BM-MSCs, C-MSCs, and AT-MSCs was 61.2, 51.47, 

and 45.2 h, respectively, based on the logarithmic growth 

phase. AT-MSCs possessed the lowest population doubling 

numbers at passages 3. BM-MSCs reached 100% conG uence 

in 5 days, partly because the area of a single BM-MSC is 

larger than that of C-MSC or AT- MSC (Fig. 1C).

Flow cytometric analysis of the cell cycle showed differ-

ent percentages of cell populations in each phase. The results 

indicated that AT-MSCs possessed the greatest proliferation 

capacity with the highest proportion in S phase, followed by 

BM-MSCs and C-MSCs (Fig. 1D). G1, G2/M, S proportions of 

MSCs at passage 3 and 6, respectively, are shown in Table 1. 

SigniE cant differences in S phase were observed among the 

three MSC types (*p < 0.05).

The telomerase activity results indicated differences 

among BM-MSCs, AT-MSCs and C-MSCs at the same pas-

sage. There was no signiE cant difference between passage 3 

and passage 6 for the same type of cell (Fig. 1E).
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FIG. 1. Expansion ability and phenotypic characterization of 

BM-, C-, AT-MSCs. Abbreviations: BM-MSCs, MSCs from bone 

marrow; C-MSCs, MSCs from cartilage and AT-MSCs, MSCs 

from adipose tissue. (A) The E broblast-like morphology of BM-, 

C-, AT-MSCs after initial plating and at passage 3 (original mag-

niE cation 100×, bar = 50 μm). (B) Flow cytometry analysis of BM-, 

C-, AT-MSCs at passage 3. Cells were detached and labeled with 

anti-CD34, anti-CD45, anti-CD44,  anti-CD73, and anti-CD90, and 

then analyzed by G ow cytometry. The values represent the mean 

percentage of all assessed cells positively stained by the respective antibodies. (C) Growth curve of BM-, C-, AT-MSCs at 

passage 3 (n = 3, mean ± SD). (D) Flow cytometry analysis of cell cycle of BM-, C-, and AT-MSCs. (E) Telomerase activ-

ity of MSCs examined by Telomeric repeat ampliE cation reaction. Extract of Hela cells was used as a positive control and 

 corresponding extracts treated with RNase was used as negative controls (n = 5 each, mean ± SD, *p < 0.05, **p < 0.01).
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A high level of COL II expression was also observed after 

chondrogenic induction of C-MSCs using confocal micros-

copy after immunoG uorescent staining. In the control group, 

though no mature chondrocytes were shown in the C-MSC 

group, the intensity of COL II green G uorescence was signiE -

cantly higher than in the parallel control groups of BM-MSCs 

and AT-MSCs (Fig. 4C).

Angiogenic cytokine expressions detected 
by real-time RT-PCR

The expression levels of various angiogenesis factors in 

BM-, C-, and AT-MSCs at passages 3 and 6 were measured by 

real-time RT-PCR. These factors included the following: vas-

cular endothelial growth factor (VEGF), insulin-like growth 

factor (IGF), platelet-derived growth factor (PDGF), hepa-

tocyte growth factor (HGF), basic E broblast growth factor 

(bFGF), transforming growth factor-β1 (TGF -β1), angiopo-

etin-1 (Ang-1), and stem cell factor (SCF).

The results indicated basic expression of those angio-

genic cytokines in original culture and varied from pas-

sage 3 to passage 6. In general, expression levels of these 

factors were higher in passage 3 than in passage 6. The 

expressions of VEGF (Fig. 5A) and IGF (Fig. 5B) were 

higher in BM-MSCs than other types of MSCs, whereas 

PDGF (Fig. 5C) and HGF (Fig. 5D) were highest in C-MSCs. 

The expression of bFGF (Fig. 5E) in AT-MSCs showed an 

incredibly high level at passage 3, which decreased dra-

matically by passage 6. Moreover, TGF-β1 exhibited lower 

level expression in C-MSCs than BM-MSCs and AT-MSCs 

(Fig. 5F). Ang-1, a strong angiogenesis factor, was expressed 

at a relatively high level at passage 3 of all three types 

of MSCs but decreased at passage 6 (Fig. 5G). High level 

expression of SCF was observed in BM-MSCs at passage 3 

but not in C-MSCs and AT-MSCs (Fig. 5H).

Anti-apoptosis ability

Apoptosis triggered by 2 mmol/L H2O2. After 90 min of 

2 mmol/L H2O2 induction, obvious morphology changes 

in the BM-MSCs, C-MSCs, and AT-MSCs were observed by 

light microscopy. AT-MSCs showed the most sensitive reac-

tion to oxidative stress in that most of cells detached from 

the plate. In contrast to AT-MSCs and BM-MSCs, C-MSCs 

showed superior tolerance to oxidative stress with the least 

morphological change. Apoptosis was conE rmed through 

confocal microscopy using Tunel staining (Fig. 6A) and 

Annexin-V and PI double staining (Fig. 6B).

Quantitative analysis of apoptosis was also conducted 

by FACS and conE rmed that C-MSCs possessed the high-

est tolerance to oxidative stress, followed by BM-MSCs 

(Fig. 6C). SigniE cant differences were observed among the 

three kinds of MSCs (Fig. 6D).

Apoptosis induced by serum deprivation. To evaluate the 

survivability of MSCs from the three different sources in 

response to serum-free culture, cells were analyzed by MTT. 

Within 60 h, proliferation ability was inhibited to different 

extents and the morphology of cells had changed. C-MSCs 

showed inferior tolerance to serum-free culture than the 

other MSCs (Fig. 6E).

At 60 h after induction of serum deprivation, BM-MSCs, 

C-MSCs, and AT- MSCs were stained with Annexin-V and 

PI and assessed by FACS. The ratio of apoptosis was consis-

tent with the result of MTT. BM-MSCs and AT-MSCs have 

superior anti-apoptosis capacity toward serum-free culture 

(Fig. 6F and G).

We summarize our observations in Table 2.

Discussion

Transplantation of autologous or allogeneic MSCs repre-

sents a novel form of stem cell therapy which shows sub-

stantial promise in the treatment of a number of human 

diseases. In order to provide a foundation for further biolog-

ical characterization, we analyzed MSCs from rat BM and 

two alternative sources, cartilage and AT. As potential seed 

cells for stem cell transplantation, their ease of isolation, sur-

vival ability and expansion potential, capacity for differen-

tiation, and potential to enhance repair in vital tissues are 

among their most important properties [5,16,17]. This study, 

to our knowledge, presents for the E rst time a systematical 

and all-round comparison of MSCs from BM, cartilage, and 

AT for the purpose of setting up an experimental evaluation 

system to help choose a better cell source for further clinical 

therapies. Our observations could provide some experimen-

tal evidences on choosing a suitable cell source for a particu-

lar therapeutic purpose.

Our E ndings indicate that: (1) AT-MSCs are a promising 

source due to their high proliferation ability; (2) C-MSCs 

possess superior capacity toward chondrogenic differen-

tiation and therefore might be a good seed cell source for 

cartilage tissue engineering; (3) MSCs from BM, cartilage, 

and AT all express angiogenic cytokines; (4) C-MSCs pos-

sess the highest resistance toward H2O2-induced apoptosis, 

while AT-MSCs exhibit high tolerance to serum deprivation-

induced apoptosis.

Table 1. Cell Cycle Analysis of Mesenchymal Stem Cells from Bone Marrow, 

Cartilage and Adipose Tissue by Flow Cytometry

 

BM-MSCs C-MSCs AT-MSCs

Passage 3 Passage 6 Passage 3 Passage 6 Passage 3 Passage 6

G1 (%) 82.24 ± 3.43 89.57 ± 3.2 90.61 ± 2.49 93.19 ± 3.08  73.96 ± 2.43 75.44 ± 3.13

G2 (%)  6.44 ± 3.53  2.3 ± 2.06 3.74 ± 2.36 3.33 ± 2.32 0.003 ± 0.005  4.90 ± 3.18

S (%)*  11.3 ± 1.24  8.13 ± 1.18 5.64 ± 0.28 3.49 ± 0.86  26.22 ± 2.67 19.66 ± 0.94

The table shows the mean values of the percentage of cells at each phase (mean ± standard deviation). SigniE cant 

differences in S phase were observed between every two groups (*p < 0.05).
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FIG. 2. Comparative analysis of the osteogenesis differentiation capacity of BM-, C-, and AT-MSCs. (A) Osteogenesis 

was  demonstrated by enhancement of alkaline phosphatase activity 14 days after induction (original magniE cation 100×, 

bar = 50 μm). Upregulation of the expression of speciE c osteogenic genes, runt related transcription factor 2 (Runx-2) 

(B), collagen I (COL I) (C), and osteocalcin (OCN) (D), were evaluated by real-time RT-PCR at 0, 3, 7, 10, and 14 days post-

induction (mean ± SD, n = 3, *p < 0.05, **p < 0.01). (E) Analysis of ALP activity in the lysates of BM-, C-, AT-MSCs at 0, 3, 7, 

10, and 14 days. ALP activity in BM-MSCs was signiE cantly higher than C- and AT-MSCs. The results of real-time RT-PCR 

and ALP activity were analyzed by One-Way ANOVA test (mean ± SD, n = 3 each, *p < 0.05, **p < 0.01).

A promising alternative source to BM-MSCs, MSCs from 

human AT can be obtained by a less invasive method and 

harvested in larger quantities than from other sources [5,18]. 

According to the growth curve analysis, the population dou-

bling time of AT-MSCs is 45.2 h, signiE cantly shorter than 

BM-MSCs (61.2 h), and C-MSCs (51.47 h). The percentage of 

AT-MSCs in S phase was 26.22 ± 2.67 % at passage 3 and 

19.66 ± 0.94 h at passage 6, indicating that AT-MSCs possess 

high self-propagating potential, which was veriE ed by their 

high telomerase activity.

Human cartilage has been reported to contain multi-

potent stem cells that possess functional capacity both for 

self-renewal and multipotential differentiation [7,8]. In our 

research, we harvested a population of stem cells from rat 
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the fact that non-differentiated MSCs expressed multiple 

osteogenic, adipogenic, and chondrogenic genes as shown 

by the results of real-time RT-PCR. However, our investiga-

tions were limited to studying mesodermal differentiation. 

The spectrum of differentiation of MSCs does not seem to 

be restricted to these lineages. MSCs derived from BM and 

AT have been shown to differentiate into other mesodermal 

lineages and into endo- and ectodermal lineages as well 

[20–22].

How did MSCs affect repair and regeneration? In ani-

mal models of cardiac ischemia, a large body of evidence 

indicates that administration of angiogenic cytokines can 

augment reperfusion and enhance neovascularization 

through paracrine mechanisms. Several growth factors have 

angiogenic activity, such as VEGF, bFGF, PDGF, HGF, IGF, 

TGF, and Ang-1 [13,23–25]. SCF was considered to conduct 

the mobilization of BM stem cells [26]. However, the basic 

expression of angiogenic cytokines was not clear. We com-

pared the expression of angiogenic cytokines in BM-, C-, and 

AT-MSCs at different passages under normal growth condi-

tions by quantitative RT-PCR. The results demonstrated that 

expression levels of angiogenesis factors differed among 

cartilage, which proved to have self-renewal and meso-

dermal differentiation capacity. Furthermore, this popula-

tion of cells was negative for CD34 and CD45, and positive 

for CD44, CD73 and CD90. These results are similar to those 

of previous reports [18,19].

Multi-lineage differentiation potential has been con-

sidered an important quality of stem cells. In the present 

study, MSCs from BM, cartilage, and AT were veriE ed to 

possess osteogenic, adipogenic, and chondrogenic poten-

tial. Meanwhile, the differences in differentiation propen-

sity illustrated that the capacity for differentiation should be 

evaluated. Depending on the expression of lineage-speciE c 

markers, BM-MSCs exhibited superior capacity to osteogenic 

differentiation but inferior capacity to adipogenic differenti-

ation. Compared with BM- and AT-MSCs, C-MSCs have the 

greatest potential for chondrogenesis based on the forma-

tion of cartilage matrix and the expression of COL II, indi-

cating that C-MSCs may be a good cell source for cartilage 

tissue engineering.

Why do such differences exist? One possibility is that 

MSCs are composed of different types of precursor cells rather 

than having a pure cell population [5]. This is supported by 
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FIG. 3. Comparative analysis of adipogenesis differentiation capacity of BM-, C-, and AT-MSCs. (A) Adipogenesis as 

detected by the formation of neutral lipid vacuoles stainable with Oil Red O 7 days after induction (original magniE cation 

200×, bar = 30 μm). The expression of speciE c adipogenic genes, peroxisome proliferator-activated receptor γ (PPARγ) (B) 

and lipoprotein lipase (LPL) (C), evaluated by real-time RT-PCR at 0, 3, 7, days post-induction. The results were analyzed by 

One-Way ANOVA test (mean ± SD, n = 3, *p < 0.05, **p < 0.01). (D) Densitometric analysis of Oil Red O staining of BM-, C-, 

and AT-MSCs 7 days after induction. The ratio of red-stained area to the total area of cells was calculated by image analysis 

and represented the ratio of adipogenic differentiation.
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FIG. 5. mRNA expression of angiogenesis factors in BM-, C-, and AT-MSCs examined by real-time RT-PCR. (A) Vascular 

endothelial growth factor (VEGF), (B) insulin-like growth factor (IGF), (C) platelet-derived growth factor (PDGF), 

(D)  hepatocyte growth factor (HGF), (E) basic E broblast growth factor (bFGF), (F) transforming growth factor-β1 (TGF-β1), 

(G) angiopoietin-1 (Ang-1), and (H) stem cell factor (SCF). The results indicated the relative level of angiogenesis factor 

secreted by MSCs. Control cells are Rat-2, cells of rat E broblast lineage. The results were analyzed by One-way ANOVA test 

(mean ± SD, n = 6 each, #p < 0.05 vs. different passage of the same MSCs, ##p < 0.01 vs. different passage of the same MSCs 

*p < 0.05, **p < 0.01).

the three sources of MSCs and decreased with passaging as 

shown by comparison of MSCs at passage 3 and passage 6. 

The different types of MSC show differential expression of 

the various angiogenic cytokines. Though the actual expres-

sion levels of these genes in vivo may differ from the base-

line in vitro, the basic expression level is a possible way of 

investigating the angiogenic effects. How these angiogenic 

cytokines  function in vivo requires further investigation.

Another aspect we considered an important property for 

seed cells is survival capacity. To imitate conditions in vivo, 

MSCs was exposed to superoxide stress and serum depriva-

tion. Surprisingly, C-MSCs were found to possess superior 

anti-apoptotic ability under H2O2 conditions but inferior sur-

vival ability toward serum deprivation. AT-MSCs showed 

the opposite, with higher sensitivity to superoxide stress, 

which usually accompanies ischemia-reperfusion damage. 
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 promote in vitro and in vivo arteriogenesis through paracrine 

mechanisms. Circ Res 94:678–685.

10.  Al-Khaldi A, H Al-Sabti, J Galipeau and K Lachapelle. (2003). 

Therapeutic angiogenesis using autologous bone marrow stro-

mal cells: improved blood G ow in a chronic limb ischemia 

model. Ann Thorac Surg 75:204–209.

11.  Zhu W, J Chen, X Cong, S Hu and X Chen. (2006). Hypoxia and 

serum deprivation-induced apoptosis in mesenchymal stem 

cells. Stem Cells 24:416–425.
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P Igarashi. (2003). Hematopoietic stem cells contribute to the 

regeneration of renal tubules after renal ischemia-reperfusion 

injury in mice. J Am Soc Nephrol 14:1188–1199.

13.  Nagaya N, K Kangawa, T Itoh, T Iwase, S Murakami, Y Miyahara, 

T Fujii, M Uematsu, H Ohgushi, M Yamagishi, T Tokudome, 

H Mori, K Miyatake and S Kitamura. (2005). Transplantation 

of mesenchymal stem cells improves cardiac function in a rat 

model of dilated cardiomyopathy. Circulation 112:1128–1135.

These results indicate that the optimal method for and tim-

ing of cell transplantation needs to be considered with a 

view to the potential clinical application.

The E ndings that MSCs from different sources behave dif-

ferently toward H2O2-induced or serum deprivation-induced 

apoptosis are extremely interesting. Some studies indicated 

that serum deprivation-induced apoptosis in MSCs occurred 

through the mitochondrial apoptotic pathway by inducing 

Bax protein translocation to the mitochondria, loss of ∆ψm, 

release of cytochrome c, and activation of caspase cascades, 

but in a p53-independent manner [11].While the mechanism 

of H2O2-induced apoptosis in MSCs is still not well under-

stood. It was reported that H2O2-induced apoptosis in neural 

cells was mediated by p53 pathway [27]. If this mechanism 

is also involved in MSCs, the different behavior of the three 

sources of MSCs toward oxidative stress and serum depriva-

tion might be explained. To fully elucidate the mechanisms, 

further studies are needed.

Taking into account the advantages and disadvantages of 

the three stem cell sources discussed above, clinical appli-

cations may be based on their differentiation capacity, but 

more likely on the abundance, frequency, and expansion 

potential of the cells. AT-MSCs could be a good resource as 

an alternative to BM-MSCs, and C-MSCs might be a good 

candidate for cartilage tissue engineering.
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